МОТП, Контрольная 2013

Материал из eSyr's wiki.

Перейти к: навигация, поиск

Задача 1

Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака x для объектов из классов K1, K2 распределено по закону Рэлея:

 p(x|K_j) = \beta_j x e^{(-\frac{\beta_j}{2}x^2)}

Пусть β1 = 7.3 β2 = 1.3. Требуется найти области значений признака x, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.3 и 0.7.

Решение

По определению баесовского классификатора:

a(x) = \mathrm{arg}\max_{y\in Y} \lambda_{y} P_y p_y(x),

где x - классифицируемый пример, a(x) - классификатор, Y - множество классов (K1,K2), λy - цена ошибки (λ1 = λ2), Py - вероятность появления объекта класса y (априорная вероятность), py(x) - плотность распределения класса y в точке x.

Построим множество, на котором  \lambda_{1} P_1 p_1(x) \lessgtr \lambda_{2} P_2 p_2(x). Для этого решим уравнение:

 \lambda_{1} 0.3 p(x|K_1) \lessgtr \lambda_{2} 0.7 p(x|K_2)

 0.3 \cdot 7.3 \cdot x e^{(-\frac{7.3}{2}x^2)} \lessgtr 0.7 \cdot 1.3 \cdot x e^{(-\frac{1.3}{2}x^2)}

 e^{(-3x^2)} \lessgtr 0.4155

 -3x^2 \lessgtr \ln(0.4155) \lessgtr -0.878

 x \gtrless 0.541

Таким образом, при x > 0.541 классификатор отнесёт объект в класс K2, при x < 0.541 - в класс K1

Изображение:MOTP_2013_1.png

Задача 2

Имеется задача распознавания с 4-мя классами и одним признаком. Предполагается, что с использованием метода "Линейная машина" для каждого класса найдены следующие линейные разделяющие функции:

f1(x) = 4.8 − 2.3x

f2(x) = − 4.6 − 2.6x

f3(x) = 4.5 − 2.3x

f4(x) = 4.2 − 0.4x

Требуется изобразить на графике области, соответствующие отнесению к каждому из четырех классов. Для нахождения требуемых областей, решим системы неравенств:

 (1)
\begin{cases}
f_1(x) > f_2(x) \\
f_1(x) > f_3(x) \\
f_1(x) > f_4(x)
\end{cases}


\begin{cases}
4.8 - 2.3 x > -4.6 - 2.6 x \\
4.8 - 2.3 x > 4.5 - 2.3 x \\
4.8 - 2.3 x > 4.2 - 0.4 x
\end{cases}


\begin{cases}
x > -31.3 \\
4.8 > 4.5 \\
x < 0.3
\end{cases}

Таким образом, объект будет отнесён в класс 1 при  x \in (-31.3, 0.3).

Аналогично:

 (2)
\begin{cases}
f_2(x) > f_1(x) \\
f_2(x) > f_3(x) \\
f_2(x) > f_4(x)
\end{cases}


\begin{cases}
-4.6 - 2.6 x > 4.8 - 2.3 x \\
-4.6 - 2.6 x > 4.5 - 2.3 x  \\
-4.6 - 2.6 x > 4.2 - 0.4 x
\end{cases}


\begin{cases}
x < -31.3 \\
x < -30.3  \\
x < -4
\end{cases}

Oбъект будет отнесён в класс 2 при  x \in (-\inf, -31.3).

 (3)
\begin{cases}
f_3(x) > f_1(x) \\
f_3(x) > f_2(x) \\
f_3(x) > f_4(x)
\end{cases}


\begin{cases}
4.5 - 2.3 x > 4.8 - 2.3 x \\
4.5 - 2.3 x > -4.6 - 2.6 x \\
4.5 - 2.3 x > 4.2 - 0.4 x
\end{cases}

 x \in \empty , поэтому никакой объект не будет отнесён к классу 3.

 (3)
\begin{cases}
f_4(x) > f_1(x) \\
f_4(x) > f_2(x) \\
f_4(x) > f_3(x)
\end{cases}


\begin{cases}
x > 0.3 \\
x > -4 \\
x > 0.2
\end{cases}

Oбъект будет отнесён в класс 4 при  x \in (0.3, +\inf).

Изображение:MOTP_2013_2.png

Личные инструменты
Разделы